Potomac PCB TMDL

Current Status and Next Steps

Victor J. Bierman, Jr., Scott C. Hinz and Daniel K. Rucinski Limno-Tech, Inc.

Technical Advisory Committee Meeting
Metropolitan Washington Council of Governments
Washington, DC

January 30, 2007

Challenges

- Complexity of system
 - Tidal
 - Multiple PCB sources
 - Ongoing sources from watershed
 - Atmospheric sources
 - Legacy contamination in sediments
 - Different PCB water quality standards
 - ◆ DC, Maryland and Virginia
- PCB data limitations
 - Water column
 - Loadings
- Ambitious schedule
 - Court mandates
 - Administrative agreements

Modeling Schedule

- Final Calibration and Validation
 - -February 23, 2007
- Draft Report on Hydrodynamic, Salinity and PCB Mass Balance Models
 - -April 1, 2007
- Final Modeling Report
 - -June 1, 2007

Modeling Approach

Integrated Modeling Framework

Key Features

Hydrodynamics (DYNHYD5)

- Builds upon CBEMP, TAM/WASP and DEM models
- 1D branched spatial grid
- Represents main channel, Anacostia and Virginia embayments
- Daily forcing for freshwater inflows
- Hourly forcing for downstream tidal heights

PCB Mass Balance (WASP5)

- PCBs follow the organic carbon
- Builds upon Delaware River Estuary PCB TMDL model
- 1:1 spatial mapping between DYNHYD5 and WASP5
- 2D horizontal spatial grid
- 250 spatial grid cells

DELPCB Model Framework

Principal Model Limitations

Does Not Represent

- Lateral spatial gradients within main channel and/or within embayments, tributaries and coves
- Potential differences in sediment-water exchanges between the main channel and nearshore areas
- Complex physical processes in the vicinity of the estuarine turbidity maximum
- Vertical stratification in the lower estuary
- Sediment transport or suspended solids mass balance

Model Grid Development

- Chesapeake Bay Model (57K grid)
 - Mainstem Potomac
 - Middle and lower estuary
- TAM/WASP Model
 - Anacostia
- Dynamic Estuary Model (DEM)
 - Washington Ship Channel
- VIMS Virginia Embayment Models
 - Virginia embayments

Figure 1. Map of Study Area

Figure 2. Bathymetry from 57K Chesapeake Bay Environmental Model Package (CBEMP)

Figure 3. DYNHYD Junction-Channel Grid

Figure 4. DYNHYD Junction-Channel Grid (Washington DC)

Figure 5. DYNHYD Junction-Channel Grid (Upper Potomac)

Figure 6. DYNHYD Junction-Channel Grid (Middle Potomac)

Figure 7. DYNHYD Junction-Channel Grid (Lower Potomac)

1994-2006 Daily Flow at Little Falls (DYNHYD5 Junction 97)

Figure 10. Locations of Salinity and Tide Gages

Hydrodynamic Model

Water Surface Elevation

Lewisetta

Lewisetta

Colonial Beach

Colonial Beach

Washington, DC

Washington, DC

Mass Balance Model

Salinity

Low Flow – 3,729 cfs (20th Percentile)

Moderate Flow – 10,428 cfs (50th Percentile)

High Flow – 19,850 cfs (80th Percentile)

Potomac River - Segment 1, River Mile 4.82 Model-Data Comparative Plot & Statistics

Potomac River - Segment 8, River Mile 19.88 Model-Data Comparative Plot & Statistics

Potomac River - Segment 22, River Mile 48.59 Model-Data Comparative Plot & Statistics

Potomac River - Segment 33, River Mile 64.46 Model-Data Comparative Plot & Statistics

Potomac River - Segment 38, River Mile 71.05 Model-Data Comparative Plot & Statistics

Potomac River - Segment 47, River Mile 81.52 Model-Data Comparative Plot & Statistics

Mass Balance Model

Organic Carbon Sorbents

Mass Balance Model

Tri+ PCBs

Next Steps in Modeling Effort

- Resolve outstanding loading issues
- Extend model through December 31, 2005
- Incorporate new WSM5 loads for organic carbon based on TSS and foc
- Incorporate solids (organic carbon) loads from bank erosion
- Implement capability for mass balance components analysis
- Analyze long-term PCB trends in fish and sediment
- Finalize model calibration for WSE, salinity, organic carbon and Tri+ PCBs
- Select 12-month cycling period for TMDL runs
- Translation of model results from Tri+ to Total PCBs
- Translation of model results to Total PCBs in fish tissue
- Use calibrated/validated model to develop PCB TMDL